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Consider a popular tourist destination shown in Figure
1. How can we exploit the large set of photographs avail-
able online depicting this same general location in order to
better understand the content of this particular image? It is
useful to divide scene components into two categories: dy-
namic objects such as people, bikes, cars, pigeons or street
vendors that move about and are likely to only appear in an
image taken at a particular time, and static backgrounds
such as buildings, streets, landscaping, or benches that are
visible in many different images taken in the same location.

For static (rigid) backgrounds, a classic approach to
scene understanding is to use structure-from-motion (SfM)
and multi-view stereo (MVS) techniques to build up an ex-
plicit model of the scene geometry and appearance. Such
a model can make strong predictions about a novel test
image including the camera pose and locations of scene
points within the image. These methods are now well devel-
oped and work robustly on large unstructured photo collec-
tions [8, 1]. For dynamic objects, past images of a scene can
provide general information about where objects are likely
to appear in the future. For example, we might expect a
priori to see pedestrians on a sidewalk. This idea has been
explored extensively in the literature on scene context [9, 5]
and more recently in work on affordances [4, 3].

While images of real scenes typically contain both static
and dynamic components, these corresponding approaches
to scene understanding have largely been pursued indepen-
dently. Work on scene context the last few years has focused
on single-image geometry estimation (e.g. [7, 6, 4]). On the
other hand, from the perspective of multi-view geometry,
dynamic objects are a nuisance and must be treated as out-
liers during matching. Here we explore how to combine
these two ideas, namely: How can strong models of static
backgrounds improve detection of dynamic objects?

We propose two approaches that utilize static scene anal-
ysis for detection. The first is to perform unsupervised anal-
ysis of a large set of scene images to automatically train
scene-specific object detectors. At test time, if we have
rough camera localization (e.g., GPS coordinates), we can
invoke the appropriate scene-specific detector rather than
a generic detector. Our key observation is that while ac-
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Figure 1: Wide-baseline matching to a collection of internet
photos provides estimates of which pixels belong to static
background regions.

quiring scene-specific positive training instances is expen-
sive, it is possible to automatically produce large quanti-
ties of scene-specific negative training instances in an unsu-
pervised manner by identifying portions of a scene that are
likely to be static background.

The second approach, which we term multi-view back-
ground subtraction, is inspired by the classic trick used
to analyze video surveillance data where one can build up
a model of the scene background (e.g. median color) and
compare it to a new image (subtraction). Unfortunately,
such a model is tied to the pixel coordinate system and
hence offers little help for understanding a new image taken
from a novel viewpoint or with a different camera. If in-
stead we model the static background in world coordinates
(e.g., as a high-quality 3D mesh) and accurately estimate
the camera pose for a test image, we can render the appro-
priate background image and perform subtraction as before
to identify static and dynamic image regions.

At their core, both of these approaches tackle the same
problem of modeling static background for a scene. Scene-
specific object detectors implicitly contain a model of the
scene background derived from negative training examples.
Since the detectors are used in a sliding window fashion,
this model of the background is translation invariant and
must function well at any image location. Multi-view back-
ground subtraction goes one step further by synthesizing a
spatially varying model of the background. The detector
then competes with the background model in order to ex-
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plain the image contents at each image location. A key dis-
tinction is that the former works during training to generate
an specific object detector for each scene while the later de-
mands more substantial test-time inference.

Experiments: We experiment using an off-the-shelf
software pipeline to reconstruct the static scene in which
our objects are placed. We use Bundler [8] to perform key-
point matching and bundle-adjustment across SIFT descrip-
tors computed on a large collection of un-calibrated images
(a set of 400 images of Notre Dame annotated with pedes-
trian bounding boxes). Once camera poses have been es-
timated, we use a modified version of PMVS [2] to per-
form multi-view stereo yielding a dense set of correspond-
ing patches. We threshold the patch match quality scores to
yield a binary background mask as shown in Figure1.

Scene Specific Background Models: When ground-
truth annotations of positives for a scene specific dataset
are available, hard negative mining can easily be used by
just dropping any candidate negative windows that overlap
significantly with a ground-truth positive. However, label-
ing images is a labor intensive process and can’t be car-
ried out for every possible scene. Instead we use the back-
ground mask as a proxy that can be produced in an unsuper-
vised manner, dropping candidate scene-specific negatives
with less than 80% background points. We found that both
the Dalal-Triggs (DT) and Deformable Part Model (DPM)
detectors performed significantly better when trained with
scene specific negatives (SS−). DT improved from 0.30 to
0.40 and DPM from 0.46 to 0.55 average precision. Using
fully supervised scene-specific negatives yielded an AP of
0.41 for DT and 0.55 for DPM suggesting that our unsuper-
vised negative mining based on masks is capturing most of
the useful negative examples.

Multi-View Background Subtraction: For a novel im-
age, we ask if a detection is consistent with the segmenta-
tion specified by the background mask. We explored a vari-
ety of approaches to integrating this information (GrabCut,
super-pixels, shape priors, etc.) but found that simply drop-
ping windows with a large proportion of background pixels
performed as well. This multi-view background subtrac-
tion scheme (MVBS) yielded gains for both detectors (AP
of 0.41 and 0.56 for DT+MVBS and DPM+MVBS respec-
tively). In the case of the DT detector, the combination of
MVBS and SS− training achieves even better performance
while the DPM model saturates.

The figure above shows the baseline DT detector running
at 50% recall, the scene-specific detector and the effect of
multi-view background subtraction. There are many tex-
tured regions on the cathedral facade where the baseline de-
tector produces false positives (e.g., carved human figures
naturally match the template well). The model trained with
additional scene-specific negatives is able to reject some of
the false-positives as it finds very similar examples in the
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training set which are used as negative support vectors.
Geometric Context: We also compared the Putting Ob-

jects in Perspective work of Hoiem et al. [5] using the re-
covered camera pose to impose a tight prior on the hori-
zon line position. This yielded AP of 0.40 for DPM, sug-
gesting multi-view background subtraction is able to prune
additional detections which cannot be easily pruned from
geometric considerations alone. This distinction would be
even more obvious in complicated environments (balconies,
stairs, playground equipment, trolly platforms, etc.) where
the universal ground-plane assumption is violated.

It summary, it seems worthwhile to revisit the idea of ge-
ometric context in the setting of large-scale SfM which can
provide much more reliable estimates of scene geometry for
many parts of a novel test image. From a research per-
spective, this would help isolate the benefits of geometric
context for detection from the difficulties of single-image
geometry estimation. The detection model here is simple
but one could utilize the surface estimates returned from
multi-view stereo or even re-project a 3D map which was
annotated with “affordances” indicating what spatial vol-
umes are likely to contain which objects and in which poses.
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